Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington's disease

Biochem Soc Trans. 2010 Apr;38(2):552-8. doi: 10.1042/BST0380552.

Abstract

HD (Huntington's disease) is caused by a polyQ (polyglutamine) expansion in the huntingtin protein, which leads to protein misfolding and aggregation of this protein. Abnormal copper accumulation in the HD brain was first reported more than 15 years ago. Recent findings show that copper-regulatory genes are induced during HD and copper binds to an N-terminal fragment of huntingtin, supporting the involvement of abnormal copper metabolism in HD. We have demonstrated that in vitro copper accelerates the fibrillization of an N-terminal fragment of huntingtin with an expanded polyQ stretch (httExon1). As we found that copper also increases polyQ aggregation and toxicity in mammalian cells expressing httExon1, we investigated further whether overexpression of genes involved in copper metabolism, notably MTs (metallothioneins) known to bind copper, protect against httExon1 toxicity. Using a yeast model of HD, we have shown that overexpression of several genes involved in copper metabolism reduces polyQ-mediated toxicity. Overexpression of MT-3 in mammalian cells significantly reduced polyQ aggregation and toxicity. We propose that copper-binding and/or -chaperoning proteins, especially MTs, are potential therapeutic targets for HD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism
  • Copper / metabolism*
  • Copper / physiology
  • Drug Delivery Systems
  • Exons / genetics
  • Gene Targeting
  • HeLa Cells
  • Homeostasis / genetics
  • Homeostasis / physiology
  • Humans
  • Huntingtin Protein
  • Huntington Disease / genetics
  • Huntington Disease / therapy*
  • Metabolic Networks and Pathways / genetics
  • Metallothionein / metabolism*
  • Metallothionein / physiology
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism
  • Mutant Proteins / physiology
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Protein Binding / genetics
  • Saccharomyces
  • Transfection

Substances

  • Carrier Proteins
  • HTT protein, human
  • Huntingtin Protein
  • Mutant Proteins
  • Nerve Tissue Proteins
  • Nuclear Proteins
  • copper-binding protein
  • Copper
  • Metallothionein