Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord

Ann N Y Acad Sci. 2010 Jun:1198:220-30. doi: 10.1111/j.1749-6632.2010.05538.x.

Abstract

We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpressing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Afferent Pathways / physiology*
  • Animals
  • Axons / physiology
  • Homeostasis
  • Interneurons / physiology
  • Mice
  • Motor Neurons / physiology*
  • Muscle, Skeletal / innervation*
  • Proprioception / physiology
  • Rats
  • Sensitivity and Specificity
  • Spinal Cord / physiology*
  • Spinal Nerve Roots / cytology
  • Spinal Nerve Roots / physiology
  • Synapses / physiology*