Hierarchical self-assembly of bolaamphiphiles with a hybrid spacer and L-glutamic acid headgroup: pH- and surface-triggered hydrogels, vesicles, nanofibers, and nanotubes

Langmuir. 2010 Dec 21;26(24):18694-700. doi: 10.1021/la103435t. Epub 2010 Nov 18.

Abstract

Bolaamphiphiles with L-glutamic acid headgroups and hybrid linkers, each composed of two rigid benzene rings and different polymethylene units, were designed, and morphological controls of the hierarchical self-assemblies were realized via changing solution pH and application to solid surfaces. At a low pH of 3, bolaamphiphiles formed hydrogels with water and molecules with short and long spacers formed nanofibers and helical nanoribbon-nanotubes, respectively. In a pH 12 aqueous solution, vesicles were observed from cryo-TEM measurements for amphiphiles with short spacers that could transfer to huge vesicles when cast onto a mica surface. Amphiphiles with longer spacers self-assembled into nanoparticles in a pH 12 aqueous solution while micellar fibers were formed on a mica surface. Those assemblies were characterized with UV-vis, CD, and FT-IR spectroscopy and AFM and TEM observations. With molecular structure modification and the fine tuning of conditions, morphology transitions between various nanostructures were obtained from the self-assembled bolaamphiphiles. The environmental pH can induce different interaction modes between the headgroups, and at high pH, there are strong interactions between molecular assemblies and the mica surface. It is suggested that the active headgroups, rigid necks, and flexible linkers with different lengths render molecules with diverse aggregation morphologies.