FoxO1 mediates an autofeedback loop regulating SIRT1 expression

J Biol Chem. 2011 Feb 18;286(7):5289-99. doi: 10.1074/jbc.M110.163667. Epub 2010 Dec 13.

Abstract

Forkhead transcription factor FoxO1 and the NAD(+)-dependent histone deacetylase SIRT1 are evolutionarily conserved regulators of the development of aging, oxidative stress resistance, insulin resistance, and metabolism in species ranging from invertebrates to mammals. SIRT1 deacetylates FoxO1 and enables activation of FoxO1 transcription in multiple systems. The functional consequences of the interactions between FoxO1 and SIRT1 remain incompletely understood. Here, we demonstrate that the 1.5-kb rat sirt1 promoter region contains a cluster of five putative FoxO1 core binding repeat motifs (5×IRS-1) and a forkhead-like consensus binding site (FKHD-L). Luciferase promoter assays demonstrate that FoxO1 directly activates SIRT1 promoter activity and that both the IRS-1 and FKHD-L enable FoxO1-dependent SIRT1 transcription. Electrophoretic mobility shift and chromatin immunoprecipitation assays show that FoxO1 binds to the IRS-1 and FKHD-L sites of the SIRT1 promoter. Consistently, FoxO1 overexpression increases SIRT1 expression, and FoxO1 depletion by siRNA reduces SIRT1 expression at both the messenger RNA and protein levels in vascular smooth muscle cells and HEK293 cells. Thus, endogenous FoxO1 is a positive transcriptional regulator of SIRT1. Conversely, SIRT1 promotes FoxO1-driven SIRT1 autotranscription through interacting with and deacetylating FoxO1. Moreover, resveratrol, a plant polyphenol activator of SIRT1, increases FoxO1-dependent SIRT1 transcription activity and thus induces its expression. These findings suggest that positive feedback mechanisms regulate FoxO1-dependent SIRT1 transcription and indicate a previously unappreciated function for FoxO1. This signaling network may coordinate multiple pathways acting upon immune, inflammatory, regenerative, and metabolic processes.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Enzyme Inhibitors / pharmacology
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Gene Expression Regulation, Enzymologic / drug effects
  • Gene Expression Regulation, Enzymologic / physiology*
  • HEK293 Cells
  • Humans
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • RNA, Small Interfering / genetics
  • Rats
  • Response Elements / physiology*
  • Resveratrol
  • Signal Transduction / drug effects
  • Signal Transduction / physiology
  • Sirtuin 1 / biosynthesis*
  • Sirtuin 1 / genetics
  • Stilbenes / pharmacology
  • Transcription, Genetic / drug effects
  • Transcription, Genetic / physiology*

Substances

  • Enzyme Inhibitors
  • Forkhead Transcription Factors
  • Nerve Tissue Proteins
  • RNA, Small Interfering
  • Stilbenes
  • Foxo1 protein, rat
  • Sirt1 protein, rat
  • Sirtuin 1
  • Resveratrol