Practical Aspects of microRNA Target Prediction

Curr Mol Med. 2011 Mar;11(2):93-109. doi: 10.2174/156652411794859250.

Abstract

microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington's disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1).

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Algorithms
  • Animals
  • Computational Biology* / methods
  • Humans
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism*
  • MicroRNAs / therapeutic use
  • Neurodegenerative Diseases / drug therapy
  • Neurodegenerative Diseases / genetics
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Trinucleotide Repeat Expansion / genetics

Substances

  • MicroRNAs
  • RNA, Messenger