The PI3K-Akt pathway inhibits senescence and promotes self-renewal of human skin-derived precursors in vitro

Aging Cell. 2011 Aug;10(4):661-74. doi: 10.1111/j.1474-9726.2011.00704.x. Epub 2011 May 3.

Abstract

Skin-derived precursors (SKPs) are embryonic neural crest- or somite-derived multipotent progenitor cells with properties of dermal stem cells. Although a large number of studies deal with their differentiation ability and potential applications in tissue damage repair, only a few studies have concentrated on the regulation of SKP self-renewal. Here, we found that after separation from their physiological microenvironment, human foreskin-derived SKPs (hSKPs) quickly senesced and lost their self-renewal ability. We observed a sharp decrease in Akt activity during this process, suggesting a possible role of the PI3K-Akt pathway in hSKP maintenance in vitro. Blocking this pathway with several inhibitors inhibited hSKP proliferation and sphere formation and increased hSKP senescence. In contrast, activating this pathway with PDGF-AA and a PTEN inhibitor, bpV(pic), promoted proliferation, improved sphere formation, and alleviated senescence of hSKPs, without altering their differentiation potential. Data also implied that this effect was associated with altered actions of FoxO3 and GSK-3β. Our results suggest an important role of the PI3K-Akt pathway in the senescence and self-renewal of hSKPs. These findings also provide a better understanding of the cellular mechanisms underlying hSKP self-renewal and stem cell senescence to allow more efficient expansion of hSKPs for regenerative medical applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Cellular Senescence
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors / metabolism
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Multipotent Stem Cells / cytology*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction*
  • Skin / cytology
  • Skin / metabolism*

Substances

  • FOXO3 protein, human
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors
  • Phosphatidylinositol 3-Kinases
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Proto-Oncogene Proteins c-akt
  • Glycogen Synthase Kinase 3