Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides

Lab Chip. 2011 May 7;11(9):1629-37. doi: 10.1039/c0lc00577k. Epub 2011 Mar 29.

Abstract

An optical tweezers directed parallel DNA oligonucleotide synthesis methodology is described in which controlled pore glass (CPG) beads act as solid substrates in a two-stream microfluidic reactor. The reactor contains two parallel sets of physical confinement features that retain beads in the reagent stream for synthetic reaction but allow the beads to be optically trapped and transferred between the reagent and the inert streams for sequence programming. As a demonstration, we synthesized oligonucleotides of target sequence 25-nt, one deletion and one substitution using dimethoxytrityl (DMT) nucleoside phosphoramidite chemistry. In detecting single-nucleotide mismatches, fluorescence in situ hybridization of the bead-conjugated probes showed high specificity and signal-to-noise ratios. These preliminary results suggest further possibilities of creating a novel type of versatile, sensitive and multifunctional reconfigurable one-bead one-compound (OBOC) bead array.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbocyanines / chemistry
  • Equipment Design
  • Fluorescent Dyes / chemistry
  • Microfluidic Analytical Techniques / instrumentation
  • Microfluidic Analytical Techniques / methods*
  • Microspheres*
  • Oligonucleotides / chemical synthesis*
  • Optical Tweezers*
  • Particle Size
  • Silanes / chemistry
  • Spectrometry, Fluorescence

Substances

  • Carbocyanines
  • Fluorescent Dyes
  • Oligonucleotides
  • Silanes
  • cyanine dye 3