Polysaccharide peptides from Coriolus versicolor competitively inhibit tolbutamide 4-hydroxylation in specific human CYP2C9 isoform and pooled human liver microsomes

Phytomedicine. 2011 Oct 15;18(13):1170-5. doi: 10.1016/j.phymed.2011.06.002. Epub 2011 Jul 14.

Abstract

Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited CYP2C11-mediated tolbutamide 4-hydroxylation in the rat both in vitro and in vivo. In this study, the effects of water extractable fraction of PSP on tolbutamide 4-hydroxylation was investigated in pooled human liver microsomes and in specific human CYP2C9 isoform. PSP (2.5-20μM) dose-dependently decreased the biotransformation of tolbutamide to 4-hydroxy-tolbutamide. Enzyme kinetics studies showed inhibition of tolbutamide 4-hydroxylase activity was competitive and concentration-dependent. In pooled human liver microsomes, PSP had a K(i) value of 14.2μM compared to sulfaphenazole, a human CYP2C9 inhibitor, showed a K(i) value of 0.32μM. In human CYP2C9 isoform, the K(i) value of PSP was 29.5μM and the K(i) value of sulfaphenazole was 0.04μM. This study demonstrated that PSP can competitively inhibit tolbutamide 4-hydroxylation in both pooled human liver microsomes and specific human CYP2C9 in vitro. This study compliments previous findings in the rat that PSP can inhibit human tolbutamide 4-hydroxylase, but the relatively high K(i) values in human CYP2C9 would suggest a low potential for PSP to cause herb-drug interaction.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / antagonists & inhibitors*
  • Aryl Hydrocarbon Hydroxylases / metabolism
  • Coriolaceae / chemistry*
  • Cytochrome P-450 CYP2C9
  • Cytochrome P-450 Enzyme Inhibitors*
  • Cytochrome P-450 Enzyme System / metabolism
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Hydroxylation / drug effects
  • Microsomes, Liver / drug effects*
  • Microsomes, Liver / enzymology
  • Microsomes, Liver / metabolism
  • Plant Extracts / pharmacology
  • Plants, Medicinal / chemistry
  • Proteoglycans / chemistry
  • Proteoglycans / pharmacology*
  • Rats
  • Tolbutamide / metabolism*
  • Tolbutamide / pharmacology

Substances

  • Cytochrome P-450 Enzyme Inhibitors
  • Enzyme Inhibitors
  • Plant Extracts
  • Proteoglycans
  • polysaccharide peptide
  • Cytochrome P-450 Enzyme System
  • Tolbutamide
  • CYP2C9 protein, human
  • Cytochrome P-450 CYP2C9
  • Aryl Hydrocarbon Hydroxylases
  • tolbutamide 4-hydroxylase