In-depth investigation of EPR spectra of Mn(2+) ions in ZnS single crystals with pure cubic structure

J Phys Condens Matter. 2009 Apr 8;21(14):145408. doi: 10.1088/0953-8984/21/14/145408. Epub 2009 Mar 13.

Abstract

The X (9.8 GHz)-band electron paramagnetic resonance (EPR) properties of substitutional Mn(2+) ions in high quality cubic ZnS single crystals grown from PbCl(2) flux have been thoroughly investigated. Accurate spin Hamiltonian (SH) parameters: g = 2.002 25 ± 0.000 06; a = (7.987 ± 0.008) × 10(-4) cm(-1) and A = -(63.88 ± 0.02) × 10(-4) cm(-1) were obtained by simulation and fitting to the experimentally allowed transitions recorded for the magnetic field aligned within ± 0.25° along the main crystal axes. The normally forbidden hyperfine [Formula: see text], Δm = ± 1 transitions were also observed. Their position was found to be in agreement, within the experimental accuracy of ΔH = ± 0.01 mT, with calculations using the same SH parameters. The angular variation of the ratios of the intensities of the central forbidden to the allowed transitions could be accounted for only by including an additional constant contribution. The observed line broadening of the [Formula: see text] and [Formula: see text] fine structure transitions and their line width variation in a (110) plane have been quantitatively described by considering a random distribution of lattice strains at the Mn(2+) impurity ions. The influence of the forbidden transitions and line broadening on the EPR spectra line shape of the Mn(2+) ions in cubic ZnS crystalline powders is also examined.