Targeting bone as a therapy for myeloma

Cancer Microenviron. 2011 Dec;4(3):299-311. doi: 10.1007/s12307-011-0079-2. Epub 2011 Aug 11.

Abstract

Myeloma bone disease (BD) not only impairs quality of life, but is also associated with impaired survival. Studies of the biology underlying BD support the notion that the increased osteoclastogenesis and suppressed osteoblastogenesis, is both a consequence and a necessity for tumour growth and clonal expansion. Survival and expansion of the myeloma clone is dependent on its interactions with bone elements, thus targeting these interactions should have antimyeloma activities. Indeed both experimental and clinical findings indicate that bone-targeted therapies not only improve BD, but also create an inhospitable environment for myeloma cell growth and survival, favouring improved clinical outcome. This review summarizes recent progress in our understandings of the biology of myeloma BD, highlighting the role of osteoclasts and osteoblasts in this process and how they can be targeted therapeutically. Unravelling the mechanisms underlying myeloma-bone interactions will facilitate the development of novel therapeutic agents to treat BD, which as a consequence are likely to improve the clinical outcome of myeloma patients.