Transition to the ultimate state of turbulent Rayleigh-Bénard convection

Phys Rev Lett. 2012 Jan 13;108(2):024502. doi: 10.1103/PhysRevLett.108.024502. Epub 2012 Jan 9.

Abstract

Measurements of the Nusselt number Nu and of a Reynolds number Re(eff) for Rayleigh-Bénard convection (RBC) over the Rayleigh-number range 10(12)≲Ra≲10(15) and for Prandtl numbers Pr near 0.8 are presented. The aspect ratio Γ≡D/L of a cylindrical sample was 0.50. For Ra≲10(13) the data yielded Nu∝Ra(γ(eff)) with γ(eff)≃0.31 and Re(eff)∝Ra(ζ(eff)) with ζ(eff)≃0.43, consistent with classical turbulent RBC. After a transition region for 10(13)≲Ra≲5×10(14), where multistability occurred, we found γ(eff)≃0.38 and ζ(eff)=ζ≃0.50, in agreement with the results of Grossmann and Lohse for the large-Ra asymptotic state with turbulent boundary layers which was first predicted by Kraichnan.