Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism

Diabetes. 2012 Apr;61(4):888-96. doi: 10.2337/db11-1073. Epub 2012 Feb 22.

Abstract

Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / cytology
  • Cattle
  • Cells, Cultured
  • Cyclic AMP-Dependent Protein Kinases / genetics
  • Cyclic AMP-Dependent Protein Kinases / metabolism
  • Drug Administration Schedule
  • Endothelial Cells / metabolism
  • Gene Expression Regulation / physiology
  • Glucagon-Like Peptide 1 / genetics
  • Glucagon-Like Peptide 1 / metabolism
  • Glucagon-Like Peptide 1 / pharmacology*
  • Glucose / metabolism*
  • Hormones / pharmacology
  • Insulin / metabolism
  • Male
  • Microvessels
  • Muscle, Skeletal / blood supply*
  • Muscle, Skeletal / metabolism*
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / blood
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type III / genetics
  • Nitric Oxide Synthase Type III / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Somatostatin / pharmacology

Substances

  • Hormones
  • Insulin
  • Nitric Oxide
  • Somatostatin
  • Glucagon-Like Peptide 1
  • Nitric Oxide Synthase Type III
  • Proto-Oncogene Proteins c-akt
  • Cyclic AMP-Dependent Protein Kinases
  • Glucose
  • NG-Nitroarginine Methyl Ester