1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions

Spine (Phila Pa 1976). 1990 Aug;15(8):751-61. doi: 10.1097/00007632-199008010-00004.

Abstract

In vivo creep-recovery and disc pressure measurements were performed on the lumbar spine of immature and mature swine. The creep-recovery measurements were performed using a custom materials testing apparatus designed to apply static or dynamic loads to the spine of anesthetized animals. A series of three separate experiments were performed to assess the effects of: (I) animal death, (II) graded injury to the disc anulus, and (III) respiratory mechanics on the biomechanical response of the porcine L1-L3 vertebral unit (VU). In Experiments I and II, creep rate, modulus, and viscosity parameters were computed using a three-parameter solid rheological analysis of the displacement-time response recorded during the application of a 300-N load. In Experiment III, the effects of respiratory volume and frequency changes on disc pressure were assessed in the unloaded, statically loaded, and immobilized porcine VU. Our results indicated that the adult VU tended to be stiffer, deform or creep more slowly, and had a significantly higher viscosity than the VU of immature pigs. The results of Experiment I demonstrated that the biomechanical response for the VU was significantly altered by the death of the animal; the VU of the living animal (adolescent or mature) was more compliant and deformed at a faster rate than the VU of the same animal after death. Disc injury produced changes in stiffness, viscosity, and creep rate analogous to that of aging, and on the basis of the graded injuries created in this study, it appears that a small defect in the annulus is just as deleterious as removing a large section of anular material. The results of Experiment III indicated that respiration plays an important role in the normal, in vivo mechanical and nutritional behavior of the porcine VU. Altogether, these results demonstrate that, in the absence of normal physiologic conditions, one may not be able to reliably predict the mechanical response of the lumbar spine, and suggest that standards for the testing, handling, and storage of biologic tissue should be established.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Awards and Prizes
  • Biomechanical Phenomena
  • Intervertebral Disc / physiology*
  • Lumbar Vertebrae / physiology*
  • Movement / physiology
  • Pressure
  • Respiratory Mechanics / physiology
  • Stress, Mechanical
  • Swine
  • Swine, Miniature
  • Viscosity