An optically pure apogossypolone derivative as potent pan-active inhibitor of anti-apoptotic bcl-2 family proteins

Front Oncol. 2011 Sep 30:1:28. doi: 10.3389/fonc.2011.00028. eCollection 2011.

Abstract

Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (-) and (+) atropisomers. Compound (-) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (-) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC(50) values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Similarly, compound (-) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax(-/-)/bak(-/-) cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (-) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (-) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.

Keywords: 5; 5′ apogossypolone derivatives; anti-apoptotic Bcl-2; apogossypolone; apoptosis; cancer.