Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS

PLoS One. 2012;7(8):e42714. doi: 10.1371/journal.pone.0042714. Epub 2012 Aug 22.

Abstract

The hormone, relaxin, inhibits aberrant myofibroblast differentiation and collagen deposition by disrupting the TGF-β1/Smad2 axis, via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), extracellular signal-regulated kinase (ERK)1/2 phosphorylation (pERK) and a neuronal nitric oxide (NO) synthase (nNOS)-NO-cyclic guanosine monophosphate (cGMP)-dependent pathway. However, the signalling pathways involved in its additional ability to increase matrix metalloproteinase (MMP) expression and activity remain unknown. This study investigated the extent to which the NO pathway was involved in human gene-2 (H2) relaxin's ability to positively regulate MMP-1 and its rodent orthologue, MMP-13, MMP-2 and MMP-9 (the main collagen-degrading MMPs) in TGF-β1-stimulated human dermal fibroblasts and primary renal myofibroblasts isolated from injured rats; by gelatin zymography (media) and Western blotting (cell layer). H2 relaxin (10-100 ng/ml) significantly increased MMP-1 (by ~50%), MMP-2 (by ~80%) and MMP-9 (by ~80%) in TGF-β1-stimulated human dermal fibroblasts; and MMP-13 (by ~90%), MMP-2 (by ~130%) and MMP-9 (by ~115%) in rat renal myofibroblasts (all p<0.01 vs untreated cells) over 72 hours. The relaxin-induced up-regulation of these MMPs, however, was significantly blocked by a non-selective NOS inhibitor (L-nitroarginine methyl ester (hydrochloride); L-NAME; 75-100 µM), and specific inhibitors to nNOS (N-propyl-L-arginine; NPLA; 0.2-2 µM), iNOS (1400W; 0.5-1 µM) and guanylyl cyclase (ODQ; 5 µM) (all p<0.05 vs H2 relaxin alone), but not eNOS (L-N-(1-iminoethyl)ornithine dihydrochloride; L-NIO; 0.5-5 µM). However, neither of these inhibitors affected basal MMP expression at the concentrations used. Furthermore, of the NOS isoforms expressed in renal myofibroblasts (nNOS and iNOS), H2 relaxin only stimulated nNOS expression, which in turn, was blocked by the ERK1/2 inhibitor (PD98059; 1 µM). These findings demonstrated that H2 relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to mediate its anti-fibrotic actions, and additionally signals through iNOS to up-regulate MMPs; the latter being suppressed by TGF-β1 in myofibroblasts, but released upon H2 relaxin-induced inhibition of the TGF-β1/Smad2 axis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cells, Cultured
  • Cyclic GMP / metabolism*
  • Extracellular Signal-Regulated MAP Kinases
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Humans
  • Kidney / cytology
  • Male
  • Matrix Metalloproteinase 13 / genetics
  • Matrix Metalloproteinase 13 / metabolism
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism
  • Matrix Metalloproteinases / genetics
  • Matrix Metalloproteinases / metabolism*
  • Mice
  • Mice, Knockout
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type I / genetics
  • Nitric Oxide Synthase Type I / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*
  • Receptors, Peptide / genetics
  • Receptors, Peptide / metabolism
  • Relaxin / genetics
  • Relaxin / metabolism*
  • Signal Transduction / genetics
  • Signal Transduction / physiology*

Substances

  • Receptors, G-Protein-Coupled
  • Receptors, Peptide
  • Rxfp1 protein, rat
  • Nitric Oxide
  • Relaxin
  • Nitric Oxide Synthase Type I
  • Extracellular Signal-Regulated MAP Kinases
  • Matrix Metalloproteinase 13
  • Matrix Metalloproteinases
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9
  • Cyclic GMP

Grants and funding

This study was supported by a National Health and Medical Research Council of Australia (NHMRC) Project Grant (628634) to Chrishan S. Samuel and Tim D. Hewitson; a NHMRC Senior Research Fellowship to Ross A. D. Bathgate; a National Heart Foundation of Australia/NHMRC R. D. Wright Fellowship to Chrishan S. Samuel; and by the Victorian Government's Operational Infrastructure Support Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.