On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search

J Neurophysiol. 2013 Jan;109(2):557-69. doi: 10.1152/jn.00549.2012. Epub 2012 Oct 24.

Abstract

Event-related potentials (ERPs) have provided crucial data concerning the time course of psychological processes, but the neural mechanisms producing ERP components remain poorly understood. This study continues a program of research in which we investigated the neural basis of attention-related ERP components by simultaneously recording intracranially and extracranially from macaque monkeys. Here, we compare the timing of attentional selection by the macaque homologue of the human N2pc component (m-N2pc) with the timing of selection in the frontal eye field (FEF), an attentional-control structure believed to influence posterior visual areas thought to generate the N2pc. We recorded FEF single-unit spiking and local field potentials (LFPs) simultaneously with the m-N2pc in monkeys performing an efficient pop-out search task. We assessed how the timing of attentional selection depends on task demands by direct comparison with a previous study of inefficient search in the same monkeys (e.g., finding a T among Ls). Target selection by FEF spikes, LFPs, and the m-N2pc was earlier during efficient pop-out search rather than during inefficient search. The timing and magnitude of selection in all three signals varied with set size during inefficient but not efficient search. During pop-out search, attentional selection was evident in FEF spiking and LFP before the m-N2pc, following the same sequence observed during inefficient search. These observations are consistent with the hypothesis that feedback from FEF modulates neural activity in posterior regions that appear to generate the m-N2pc even when competition for attention among items in a visual scene is minimal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Appetitive Behavior*
  • Attention*
  • Brain Waves
  • Cerebral Cortex / physiology
  • Evoked Potentials, Visual*
  • Feedback, Psychological
  • Macaca radiata
  • Male
  • Task Performance and Analysis
  • Visual Fields*