Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals

Neuroreport. 2013 Jan 9;24(1):46-50. doi: 10.1097/WNR.0b013e32835c36b8.

Abstract

It is known that transcranial direct current stimulation (tDCS) can induce polarity-specific shifts in brain excitability of the primary motor cortex (M1) with anodal tDCS enhancing and cathodal tDCS reducing cortical excitability. However, less is known about its impact on specific intracortical inhibitory mechanisms, such as γ-aminobutyric acid B (GABAB)-mediated inhibition. Consequently, the aim of the present study was to assess the impact of anodal and cathodal tDCS on M1 intracortical inhibition in healthy individuals. Long-interval intracortical inhibition (LICI) and cortical silent period (CSP) duration, both presumably mediated by GABAB receptors, were assessed using transcranial magnetic stimulation immediately before and after a 20 min session of tDCS over the left M1. Anodal tDCS significantly enhanced motor evoked potential size and reduced CSP duration, whereas it had no effect on LICI. Cathodal stimulation did not significantly modulate motor evoked potential size, CSP duration or LICI. This study provides evidence that anodal tDCS, presumably by synaptic plasticity mechanisms, has a direct effect on GABAB-meditated inhibition assessed by the CSP, but not by LICI. Our results further suggest that CSP and LICI probe distinct intracortical inhibitory mechanisms as they are differentially modulated by anodal tDCS. Finally, these data may have clinical value in patients in whom a pathological increase in CSP duration is present, such as schizophrenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biophysics
  • Cortical Spreading Depression / drug effects
  • Cortical Spreading Depression / physiology*
  • Electrodes
  • Electromyography
  • Evoked Potentials, Motor / physiology*
  • Female
  • Humans
  • Male
  • Motor Cortex / physiology*
  • Neural Inhibition / physiology*
  • Time Factors
  • Transcranial Magnetic Stimulation*
  • Young Adult