The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway

J Med Chem. 2013 Feb 14;56(3):1291-300. doi: 10.1021/jm3017442. Epub 2013 Jan 31.

Abstract

Organometallic half-sandwich complexes [M(p-cymene)(azo/imino-pyridine)X](+) where M = Ru(II) or Os(II) and X ═ Cl or I, exhibit potent antiproliferative activity toward a range of cancer cells. Not only are the iodido complexes more potent than the chlorido analogues, but they are not cross-resistant with the clinical platinum drugs cisplatin and oxaliplatin. They are also more selective for cancer cells versus normal cells (fibroblasts) and show high accumulation in cell membranes. They arrest cell growth in G1 phase in contrast to cisplatin (S phase) with a high incidence of late-stage apoptosis. The iodido complexes retain potency in p53 mutant colon cells. All complexes activate caspase 3. In general, antiproliferative activity is greatly enhanced by low levels of the glutathione synthase inhibitor l-buthionine sulfoxime. The work illustrates how subtle changes to the design of low-spin d(6) metal complexes can lead to major changes in cellular metabolism and to potent complexes with novel mechanisms of anticancer activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Humans
  • Inhibitory Concentration 50
  • Osmium / chemistry
  • Pyridines / pharmacology*
  • Ruthenium / chemistry
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Antineoplastic Agents
  • Pyridines
  • Tumor Suppressor Protein p53
  • Osmium
  • Ruthenium