Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA

PLoS One. 2013 May 8;8(5):e62421. doi: 10.1371/journal.pone.0062421. Print 2013.

Abstract

Few ankylosaurs are known from more than a single specimen, but the ankylosaurid Euoplocephalus tutus (from the Late Cretaceous of Alberta, Canada and Montana, USA) is represented by dozens of skulls and partial skeletons, and is therefore an important taxon for understanding intraspecific variation in ankylosaurs. Euoplocephalus is unusual compared to other dinosaurs from the Late Cretaceous of Alberta because it is recognized from the Dinosaur Park, Horseshoe Canyon, and Two Medicine formations. A comprehensive review of material attributed to Euoplocephalus finds support for the resurrection of its purported synonyms Anodontosaurus lambei and Scolosaurus cutleri, and the previously resurrected Dyoplosaurus acutosquameus. Anodontosaurus is found primarily in the Horseshoe Canyon Formation of Alberta and is characterized by ornamentation posterior to the orbits and on the first cervical half ring, and wide, triangular knob osteoderms. Euoplocephalus is primarily found in Megaherbivore Assemblage Zone 1 in the Dinosaur Park Formation of Alberta and is characterized by the absence of ornamentation posterior to the orbits and on the first cervical half ring, and keeled medial osteoderms on the first cervical half ring. Scolosaurus is found primarily in the Two Medicine Formation of Montana (although the holotype is from Dinosaur Provincial Park), and is characterized by long, back-swept squamosal horns, ornamentation posterior to the orbit, and low medial osteoderms on the first cervical half ring; Oohkotokia horneri is morphologically indistinguishable from Scolosaurus cutleri. Dyoplosaurus was previously differentiated from Euoplocephalus sensu lato by the morphology of the pelvis and pes, and these features also differentiate Dyoplosaurus from Anodontosaurus and Scolosaurus; a narrow tail club knob is probably also characteristic for Dyoplosaurus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alberta
  • Animal Distribution
  • Animals
  • Biodiversity*
  • Dinosaurs / anatomy & histology*
  • Forelimb / anatomy & histology
  • Fossils
  • Hindlimb / anatomy & histology
  • Horns / anatomy & histology
  • Montana
  • Neck / anatomy & histology
  • Pelvis / anatomy & histology
  • Skull / anatomy & histology*
  • Species Specificity
  • Spine / anatomy & histology
  • Tail / anatomy & histology

Grants and funding

This work was supported by Alberta Ingenuity Studentship (http://www.albertainnovates.ca/), Dinosaur Research Institute (http://www.dinosaurresearch.com/index.htm), Izaak Walton Killam Doctoral Scholarship (http://www.killamtrusts.ca/uofAlberta.asp), Korea-Mongolia International Dinosaur Project (http://www.digitaldreammachine.com/gobifieldwork/kid/home.html), National Science and Engineering Research Council (Canada Graduate Scholarship – Doctoral; Postgraduate Scholarship – Masters; Michael Smith Foreign Study Supplement) (http://www.nserc-crsng.gc.ca/index_eng.asp), University of Alberta China Institute (http://www.china.ualberta.ca/), University of Alberta Graduate Students Association (http://www.gsa.ualberta.ca/), University of Alberta Women in Scholarship, Engineering, Science and Technology (http://www.wisest.ualberta.ca/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.