PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution

Air Qual Atmos Health. 2013 Jun;6(2):473-486. doi: 10.1007/s11869-012-0185-4. Epub 2012 Oct 12.

Abstract

Air quality health impact assessment (HIA) synthesizes information about air pollution exposures, health effects, and population vulnerability for regulatory decision-making and public engagement. HIAs often use annual average county or regional data to estimate health outcome incidence rates that vary substantially by season and at the subcounty level. Using New York City as an example, we assessed the sensitivity of estimated citywide morbidity and mortality attributable to ambient fine particulate matter (PM2.5) and ozone to the geographic (county vs. neighborhood) and temporal (seasonal vs. annual average) resolution of health incidence data. We also used the neighborhood-level analysis to assess variation in estimated air pollution impacts by neighborhood poverty concentration. Estimated citywide health impacts attributable to PM2.5 and ozone were relatively insensitive to the geographic resolution of health incidence data. However, the neighborhood-level analysis demonstrated increasing impacts with greater neighborhood poverty levels, particularly for PM2.5-attributable asthma emergency department visits, which were 4.5 times greater in high compared to low-poverty neighborhoods. PM2.5-attributable health impacts were similar using seasonal and annual average incidence rates. Citywide ozone-attributable asthma morbidity was estimated to be 15 % lower when calculated from seasonal, compared to annual average incidence rates, as asthma morbidity rates are lower during the summer ozone season than the annual average rate. Within the ozone season, 57 % of estimated ozone-attributable emergency department for asthma in children occurred in the April-June period when average baseline incidence rates are higher than in the July-September period when ozone concentrations are higher. These analyses underscore the importance of utilizing spatially and temporally resolved data in local air quality impact assessments to characterize the overall city burden and identify areas of high vulnerability.

Keywords: Air quality management; Health impact analysis; Ozone; PM2.5; Public health burden; Vulnerability.