Femoral osteocyte lacunar density, volume and morphology in women across the lifespan

J Struct Biol. 2013 Sep;183(3):519-526. doi: 10.1016/j.jsb.2013.07.004. Epub 2013 Jul 18.

Abstract

Osteocytes are believed to be the primary agents of mechanosensing in bone. Due to this important role in the structure-function relationship of bone, osteocytes and the spaces they occupy (lacunae) are of increasing interest. Changes in lacunae with age are of particular interest in women since they are more susceptible to bone loss and fragility associated with senescent diseases including osteoporosis. This study's purpose was to test whether differences exist in lacunar density (lacunae/mm(3) of bone), orientation and morphology in the cortex of adult women spanning the human lifespan. Anterior blocks from the femoral shaft from 30 women aged 20-86years were imaged by synchrotron-radiation micro-CT. No significant relation between lacunar density and age was detected. A significant reduction in lacunar volume with age (p<0.001) was observed, alongside changes in lacunar morphology. When divided into two groups (<50 and >50years) the younger group's lacunae were ∼30% larger and were flatter (p<0.001) and less equant (spherical) (p<0.001). To our knowledge the observation that lacunar volume and morphology change over the human lifespan is novel, potentially resulting from preferential surface infilling within the extracellular space. The functional impact of this infilling is unclear but such a change in scale likely impacts the mechanosensing function of the osteocyte network. Limitations in resolution prevented us from assessing if this infilling is associated with disruption of the canaliculi. This hypothesis warrants further investigation as, if confirmed, it would represent a profound negative impact on the osteocyte network and may provide new insights into age-related bone loss.

Keywords: Human cortical bone; Lacuna; Micro-CT; Osteocyte; Synchrotron.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Aged, 80 and over
  • Female
  • Femur / diagnostic imaging
  • Femur / ultrastructure*
  • Humans
  • Middle Aged
  • Osteocytes / physiology*
  • X-Ray Microtomography
  • Young Adult