Development of an atmospheric pressure ion mobility spectrometer-mass spectrometer with an orthogonal acceleration electrostatic sector TOF mass analyzer

Anal Chem. 2013 Oct 1;85(19):9003-12. doi: 10.1021/ac401191k. Epub 2013 Sep 17.

Abstract

Recently developed ion mobility mass spectrometer is described. The instrument is based on a drift tube ion mobility spectrometer and an orthogonal acceleration electrostatic sector time-of-flight mass analyzer. Data collection is performed using a specially developed fast ADC-based recorder that allows real-time data integration in an interval between 3 and 100 s. Primary tests were done with positive ion electrospray. The tests have shown obtaining 100 ion mobility resolving power and 2000 mass resolving power. Obtained for 2,6-di-tert-butylpyridine in electrosprayed liquid samples during 100 s analysis and full IMS/MS data collection mode were 4 nM relative limits of detection and a 1 pg absolute limit of detection (S/N=3). Characteristic ion mobility/mass distributions were recorded for selected antibiotics, including amoxicillin, ampicillin, lomefloxacin, and ofloxacin. At studied conditions, lomefloxacin forms only a protonated molecule-producing reduced ion mobility peak at 1.082 cm(2)/(V s). Both amoxicillin and ampicillin produce [M + H](+), [M + CH3OH + H](+), and [M + CH3CN + H](+). Amoxicillin shows two peaks at 0.909 cm(2)/(V s) and 0.905 cm(2)/(V s). Ampicillin shows one peak at 0.945 cm(2)/(V s). Intensity of protonated methanol containing cluster for both ampicillin and amoxicillin has a clear tendency to rise with sample keeping time. Ofloxacin produces two peaks in the ion mobility distribution. A lower ion mobility peak at 1.051 cm(2)/(V s) is shown to be formed by [M + H](+) ions. A higher ion mobility peak appearing for samples kept more than 48 h is shown to be formed by both [M + H](+) ion and a component identified as the [M + 2H + M](+2) cluster. The cluster probably partly dissociates in the interface producing the [M + H](+) ion.