Promoters maintain their relative activity levels under different growth conditions

Mol Syst Biol. 2013 Oct 29:9:701. doi: 10.1038/msb.2013.59.

Abstract

Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Culture Media
  • Escherichia coli / genetics*
  • Escherichia coli / growth & development
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics*
  • Escherichia coli Proteins / metabolism
  • Gene Expression Regulation, Bacterial*
  • Gene Expression Regulation, Fungal*
  • Genes, Reporter
  • Glucose / metabolism
  • Luminescent Proteins / genetics
  • Luminescent Proteins / metabolism
  • Models, Genetic
  • Promoter Regions, Genetic*
  • Red Fluorescent Protein
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics*
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Culture Media
  • Escherichia coli Proteins
  • Luminescent Proteins
  • Saccharomyces cerevisiae Proteins
  • Glucose