Effect of Bay K 8644 on tetraethylammonium-induced excitability of the rabbit pulmonary artery

Can J Physiol Pharmacol. 1987 May;65(5):828-33. doi: 10.1139/y87-133.

Abstract

The effect of Bay K 8644 on the electrical activity of the smooth muscle cells in the main pulmonary artery of the rabbit was examined. In normal physiological solution, the resting membrane potential was -56 +/- 0.6 mV, and the cells were electrically quiescent. Tetraethylammonium (5 mM) depolarized the membrane to about -45 mV, and electrical stimulation elicited action potentials. To suppress contractile responses and thereby facilitate sustained impalements, the muscle strips were bathed with a hypertonic solution containing sucrose. The mean amplitude of the tetraethylammonium-induced action potentials in the hypertonic solution was 35 +/- 0.9 mV. The action potentials were dependent upon the extracellular Ca2+ concentration and were abolished by diltiazem (10(-6) M). Spontaneous action potentials were occasionally generated in the presence of tetraethylammonium alone and could be induced by the further addition of Ba2+ (0.5 mM). The Ca2+ agonist Bay K 8644 (10(-8) to 10(-6) M) had no effect on the resting membrane potential or excitability in normal solution. However, in the hypertonic solution containing tetraethylammonium, Bay K 8644 caused a further depolarization and oscillatory potential changes, which were not prevented by tetrodotoxin. The oscillations were suppressed or abolished by diltiazem or nilvadipine. Thus, active responses can occur in the normally quiescent smooth muscle cells of the rabbit pulmonary artery when the outward K+ current(s) are suppressed.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology
  • Action Potentials / drug effects
  • Animals
  • Calcium / physiology*
  • Diltiazem / pharmacology
  • Drug Interactions
  • Electric Stimulation
  • In Vitro Techniques
  • Male
  • Membrane Potentials / drug effects
  • Pulmonary Artery / drug effects
  • Pulmonary Artery / physiology*
  • Rabbits
  • Tetraethylammonium
  • Tetraethylammonium Compounds / pharmacology
  • Vasoconstriction* / drug effects

Substances

  • Tetraethylammonium Compounds
  • Tetraethylammonium
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
  • Diltiazem
  • Calcium