An inward calcium current underlying regenerative calcium potentials in rat striatal neurons in vitro enhanced by Bay K 8644

Neuroscience. 1987 Jun;21(3):997-1005. doi: 10.1016/0306-4522(87)90054-6.

Abstract

The single electrode voltage clamp technique was used to characterize the currents underlying the calcium potentials in rat caudate neurons in vitro. In current clamp experiments, long depolarizing current pulses evoked repetitive firing of fast somatic action potentials. These were abolished by tetrodotoxin (1 microM) and replaced by slow graded depolarizing potentials. These were preceded by a transient hyperpolarizing notch. Addition of 4-aminopyridine (100 microM) abolished the hyperpolarizing notch, enhanced the slow graded depolarizing response and induced the appearance of a slow all-or-nothing action potential. Both the slow graded response and the all-or-nothing action potential were abolished by cobalt (2 mM), suggesting the involvement of voltage-dependent calcium conductances. When the neurons were loaded intracellularly with caesium the action potential duration increased. Substitution of the extracellular calcium by barium (1-3 mM) or external addition of tetraethylammonium (5 mM) further prolonged spike duration and induced the appearance of long-lasting plateau potentials. These were insensitive to tetrodotoxin and were reversibly blocked by the calcium antagonists cobalt (2 mM), manganese (2 mM) or cadmium (500 microM). The calcium potentials were enhanced by the calcium 'agonist' BAY K 8644 (1-5 microM). In voltage clamp experiments when intracellular caesium was used to reduce outward currents and tetrodotoxin to block fast regenerative sodium currents, depolarizing voltage steps from a holding potential of -50, -40 mV activated an inward current. This current peaked in 50-80 ms and inactivated in two phases: an initial one at 150-200 ms followed by a second one after several hundred ms.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology*
  • Animals
  • Calcium / metabolism*
  • Caudate Nucleus / drug effects
  • Caudate Nucleus / physiology*
  • In Vitro Techniques
  • Ion Channels / drug effects
  • Ion Channels / physiology*
  • Male
  • Membrane Potentials
  • Rats
  • Rats, Inbred Strains

Substances

  • Ion Channels
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
  • Calcium