A phylogenetic re-analysis of groupers with applications for ciguatera fish poisoning

PLoS One. 2014 Aug 5;9(8):e98198. doi: 10.1371/journal.pone.0098198. eCollection 2014.

Abstract

Background: Ciguatera fish poisoning (CFP) is a significant public health problem due to dinoflagellates. It is responsible for one of the highest reported incidence of seafood-borne illness and Groupers are commonly reported as a source of CFP due to their position in the food chain. With the role of recent climate change on harmful algal blooms, CFP cases might become more frequent and more geographically widespread. Since there is no appropriate treatment for CFP, the most efficient solution is to regulate fish consumption. Such a strategy can only work if the fish sold are correctly identified, and it has been repeatedly shown that misidentifications and species substitutions occur in fish markets.

Methods: We provide here both a DNA-barcoding reference for groupers, and a new phylogenetic reconstruction based on five genes and a comprehensive taxonomical sampling. We analyse the correlation between geographic range of species and their susceptibility to ciguatera accumulation, and the co-occurrence of ciguatoxins in closely related species, using both character mapping and statistical methods.

Results: Misidentifications were encountered in public databases, precluding accurate species identifications. Epinephelinae now includes only twelve genera (vs. 15 previously). Comparisons with the ciguatera incidences show that in some genera most species are ciguateric, but statistical tests display only a moderate correlation with the phylogeny. Atlantic species were rarely contaminated, with ciguatera occurrences being restricted to the South Pacific.

Conclusions: The recent changes in classification based on the reanalyses of the relationships within Epinephelidae have an impact on the interpretation of the ciguatera distribution in the genera. In this context and to improve the monitoring of fish trade and safety, we need to obtain extensive data on contamination at the species level. Accurate species identifications through DNA barcoding are thus an essential tool in controlling CFP since meal remnants in CFP cases can be easily identified with molecular tools.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bayes Theorem
  • Ciguatera Poisoning / genetics*
  • Electron Transport Complex IV / genetics
  • Fishes / classification*
  • Genetic Markers
  • Phylogeny*
  • Species Specificity

Substances

  • Genetic Markers
  • Electron Transport Complex IV

Grants and funding

This study was funded by MNHN ATM Barcode (2010, 2011), MNHN ATM Biodiversité Actuelle et Fossile (2010) and MNHN BQR (2011), awarded to CS and JLJ. This work was supported by the "Consortium National de Recherche en Génomique", and the "Service de Systématique Moléculaire" of the Muséum National d'Histoire Naturelle (CNRS UMS 2700). It is part of the agreement n°2005/67 between the Genoscope and the Muséum National d'Histoire Naturelle on the project "Macrophylogeny of life" directed by Guillaume Lecointre. This work is part of the project @ SPEED-ID “Accurate SPEciEs Delimitation and IDentification of eukaryotic biodiversity using DNA markers” proposed by F-BoL, the French Barcode of life initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.