Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus

Appl Environ Microbiol. 2014 Nov;80(22):7079-87. doi: 10.1128/AEM.02464-14. Epub 2014 Sep 5.

Abstract

Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biofilms*
  • Caenorhabditis elegans / physiology*
  • Cattle
  • Chickens
  • Escherichia coli / physiology*
  • Food Contamination / analysis
  • Meat / microbiology*
  • Myxococcus xanthus / physiology*
  • Swine
  • Vegetables / microbiology*