Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing

Nat Commun. 2015 Jun 26:6:7507. doi: 10.1038/ncomms8507.

Abstract

Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications.

Publication types

  • Research Support, Non-U.S. Gov't