O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease

Nat Chem. 2015 Nov;7(11):913-20. doi: 10.1038/nchem.2361. Epub 2015 Oct 12.

Abstract

Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acetylglucosamine / chemistry*
  • Acylation
  • Humans
  • Parkinson Disease / metabolism*
  • alpha-Synuclein / chemistry
  • alpha-Synuclein / metabolism*

Substances

  • alpha-Synuclein
  • Acetylglucosamine