Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa

Int J Antimicrob Agents. 2016 Jan;47(1):48-55. doi: 10.1016/j.ijantimicag.2015.09.014. Epub 2015 Oct 25.

Abstract

Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene mexR that regulates the multidrug efflux operon mexAB-oprM. Deregulation of this operon led to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD-OprJ efflux pump regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use, combination therapy consistently selected for mutants with enhanced fitness expressing broad-spectrum resistance mechanisms.

Keywords: Antibiotics; Combination therapy; Drug efflux; Fluoroquinolones; Multidrug resistance; β-Lactams.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism*
  • Bacterial Proteins / genetics
  • Ceftazidime / metabolism
  • Ciprofloxacin / metabolism
  • DNA-Binding Proteins / genetics
  • Drug Combinations
  • Drug Resistance, Multiple, Bacterial*
  • Drug Therapy, Combination
  • Humans
  • Models, Theoretical
  • Mutation
  • Penicillin-Binding Proteins / genetics
  • Pseudomonas aeruginosa / drug effects*
  • Repressor Proteins / genetics
  • Selection, Genetic*
  • Transcription Factors / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • DNA-Binding Proteins
  • Drug Combinations
  • MexR protein, Pseudomonas aeruginosa
  • NfxB protein, Pseudomonas aeruginosa
  • Penicillin-Binding Proteins
  • Repressor Proteins
  • Transcription Factors
  • Ciprofloxacin
  • Ceftazidime