Chladni Patterns in a Liquid at Microscale

Phys Rev Lett. 2016 May 6;116(18):184501. doi: 10.1103/PhysRevLett.116.184501. Epub 2016 May 2.

Abstract

By means of ultrathin silicon membranes excited in the low ultrasound range, we show for the first time that it is possible to form two-dimensional Chladni patterns of microbeads in liquid. Unlike the well-known effect in a gaseous environment at the macroscale, where gravity effects are generally dominant, leading particles towards the nodal regions of displacement, we show that the combined effects of an ultrathin plate excited at low frequency (yielding to subsonic waves) together with reduced gravity (arising from buoyancy) will enhance the importance of microstreaming in the Chladni problem. Here, we report that for micrometric beads larger than the inner streaming layer, the microscale streaming in the vicinity of the plate tends to gather particles in antinodal regions of vibrations yielding to patterns in good agreement with the predicted modes for a liquid-loaded plate. Interestingly, a symmetry breaking phenomenon together with the streaming can trigger movements of beads departing from one cluster to another. We show that, for higher modes, this movement can appear as a collective rotation of the beads in the manner of a "farandole."