GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells

J Pharmacol Exp Ther. 2017 Feb;360(2):324-340. doi: 10.1124/jpet.116.237743. Epub 2016 Dec 7.

Abstract

(R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition with potential to interact on target tissues in a synergistic manner. Such polypharmacological behavior may be particularly effective in chronic obstructive pulmonary disease and other complex disorders where multiple processes interact to promote disease pathogenesis and progression.

MeSH terms

  • Adrenergic beta-2 Receptor Agonists / pharmacology
  • Adrenergic beta-2 Receptor Agonists / therapeutic use
  • Aminoquinolines / pharmacology
  • Cell Line
  • Cyclic Nucleotide Phosphodiesterases, Type 4 / metabolism*
  • Drug Interactions
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Gene Expression Regulation / drug effects*
  • Humans
  • Indans / pharmacology
  • Phosphodiesterase 4 Inhibitors / pharmacology
  • Phosphodiesterase 4 Inhibitors / therapeutic use
  • Pulmonary Disease, Chronic Obstructive / drug therapy
  • Pulmonary Disease, Chronic Obstructive / genetics*
  • Pulmonary Disease, Chronic Obstructive / pathology
  • Quinolones / pharmacology*
  • Quinolones / therapeutic use
  • Receptors, Adrenergic, beta-2 / metabolism*
  • Respiratory System / pathology*
  • Sulfones / pharmacology*
  • Sulfones / therapeutic use

Substances

  • 6-((3-((4-(5-((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)pent-1-yn-1-yl)phenyl)carbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide
  • 6-((3-((dimethylamino)carbonyl)phenyl)sulfonyl)-8-methyl-4-((3-methyloxyphenyl)amino)-3-quinolinecarboxamide
  • Adrenergic beta-2 Receptor Agonists
  • Aminoquinolines
  • Indans
  • Phosphodiesterase 4 Inhibitors
  • Quinolones
  • Receptors, Adrenergic, beta-2
  • Sulfones
  • indacaterol
  • Cyclic Nucleotide Phosphodiesterases, Type 4