Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice

FASEB J. 2017 Jun;31(6):2364-2379. doi: 10.1096/fj.201601188R. Epub 2017 Feb 23.

Abstract

Recently, we demonstrated that heat shock protein (HSP)-27 is protective against the development of experimental atherosclerosis, reducing plaque cholesterol content by more than 30%. Moreover, elevated HSP-27 levels are predictive of relative freedom from clinical cardiovascular events. HSP-27 signaling occurs via the activation of NF-κB, which induces a marked up-regulation in expression of granulocyte-monocyte colony-stimulating factor (GM-CSF), a cytokine that is known to alter ABC transporters involved in reverse cholesterol transport (RCT). Therefore, we hypothesized that HSP-27-derived GM-CSF has a potent role in impeding plaque formation by promoting macrophage RCT and sought to better characterize this pathway. Treatment of THP-1 cells, RAW-Blue cells, and primary macrophages with recombinant HSP-27 resulted in NF-κB activation via TLR-4 and was inhibited by various pharmacologic blockers of this pathway. Moreover, HSP-27-induced upregulation of GM-CSF expression was dependent on TLR-4 signaling. Recombinant (r)HSP-27 treatment of ApoE-/- female (but not male) mice for 4 wk yielded reductions in plaque area and cholesterol clefts of 33 and 47%, respectively, with no effect on GM-CSF-/-ApoE-/- mice. With 12 wk of rHSP-27 treatment, both female and male mice showed reductions in plaque burden (55 and 42%, respectively) and a 60% reduction in necrotic core area but no treatment effect in GM-CSF-/-ApoE-/- mice. In vitro functional studies revealed that HSP-27 enhanced the expression of ABCA1 and ABCG1, as well as facilitated cholesterol efflux in vitro by ∼10%. These novel findings establish a paradigm for HSP-27-mediated RCT and set the stage for the development of HSP-27 atheroprotective therapeutics.-Pulakazhi Venu, V. K., Adijiang, A., Seibert, T., Chen, Y.-X., Shi, C., Batulan, Z., O'Brien, E. R. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice.

Keywords: NF-κB; Toll-like receptors; atherosclerosis; macrophages.

MeSH terms

  • ATP Binding Cassette Transporter 1 / genetics
  • ATP Binding Cassette Transporter 1 / metabolism*
  • ATP Binding Cassette Transporter, Subfamily G, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily G, Member 1 / metabolism*
  • Animals
  • Apolipoproteins E / genetics
  • Apolipoproteins E / metabolism*
  • Atherosclerosis / prevention & control*
  • Cell Line
  • Cholesterol / metabolism*
  • Gene Expression Regulation / physiology
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics
  • Granulocyte-Macrophage Colony-Stimulating Factor / metabolism
  • HSP27 Heat-Shock Proteins / genetics
  • HSP27 Heat-Shock Proteins / metabolism*
  • Humans
  • Macrophages
  • Mice
  • Mice, Knockout
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Toll-Like Receptor 4 / genetics
  • Toll-Like Receptor 4 / metabolism

Substances

  • ABCA1 protein, mouse
  • ABCG1 protein, mouse
  • ATP Binding Cassette Transporter 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • Apolipoproteins E
  • HSP27 Heat-Shock Proteins
  • NF-kappa B
  • Toll-Like Receptor 4
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • Cholesterol