Studies of the decrease of tyrosine-O-sulphated proteins in Rous sarcoma-virus-transformed rat embryo fibroblasts, line 3Y1. Examination of the sulphate activation and tyrosyl-protein sulphotransferase systems

Biochem J. 1987 Oct 1;247(1):201-6. doi: 10.1042/bj2470201.

Abstract

The sulphate activation and tyrosyl-protein sulphotransferase systems in normal 3Y1 rat embryo fibroblasts and the same cells transformed by Schmidt Ruppin subgroup-A-Rous sarcoma virus (SRA-3Y1) were examined. Employing metabolic [35S]sulphate-labelling followed by PEI (polyethyleneimine)-cellulose thin-layer chromatography of the labelled cell lysates, it was found that the steady-state level of 'active' sulphate, adenosine 3'-phosphate 5'-phosphosulphate, was drastically lower in SRA-3Y1 cells compared with their normal counterparts. When the sulphate activating enzymes were tested, it appeared that the activities in 3Y1 homogenates were 2-2.5 times greater than those in SRA-3Y1 homogenates. An endogenous sulphation assay for tyrosyl-protein sulphotransferase revealed that activities in 3Y1 and SRA-3Y1 homogenates were comparable. Nearly identical patterns were observed with both sets of cells when [35S]sulphated proteins generated in the endogenous assay were separated by two-dimensional gel electrophoresis. It therefore seems that the tyrosyl-protein sulphotransferase(s) are unimpaired in SRA-3Y1 cells. While the lower (approx. 8 times) sulphate uptake remains the major cause for the decrease of tyrosine-O-sulphated proteins in SRA-3Y1 cells [Liu & Lipmann, (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3695-3698], the 2-2.5-fold lower sulphate activating enzyme activities also contribute to some extent to the difference between the SRA-3Y1 and 3Y1 cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Avian Sarcoma Viruses
  • Cell Line
  • Cell Transformation, Viral
  • Electrophoresis, Polyacrylamide Gel
  • Fibroblasts / enzymology*
  • Phosphoadenosine Phosphosulfate / metabolism
  • Rats
  • Sulfates / metabolism*
  • Sulfotransferases*
  • Sulfurtransferases / metabolism*
  • Tyrosine / metabolism
  • Viral Proteins / metabolism*

Substances

  • Sulfates
  • Viral Proteins
  • Tyrosine
  • Phosphoadenosine Phosphosulfate
  • Sulfurtransferases
  • Sulfotransferases
  • protein-tyrosine sulfotransferase