Effects of long term low- and high-dose sodium arsenite exposure in human transitional cells

Am J Transl Res. 2017 Feb 15;9(2):416-428. eCollection 2017.

Abstract

Epidemiological studies have revealed the association between increased risk of bladder cancer and chronic arsenic exposure. Here, we explored biological effects of arsenic in T24. Microarray analysis was applied to analyze mRNA in T24 following 0, 2 or 5 μM sodium arsenite (As) exposure for 72 hours. Long term (up to 140 days) low-dose (200 nM) and high-dose (1,000 nM) As decreased E-cadherin protein level through different mechanisms because the mRNA levels of E-cadherin increased following low-dose As exposure but decreased following high-dose As exposure. Long term As increased the protein levels of N-cadherin, vimentin, β-catenin, and slug. Low-dose As exposure resulted in a change in the morphology of T24 cells from an epithelial to a mesenchymal-like appearance. Knockdown of E-cadherin increased the protein levels of N-cadherin, vimentin, β-catenin, and slug. Cell proliferation and growth of T24 with or without As exposure for 100 days were assayed using EdU and WST, respectively. Low-dose As exposure increased cell proliferation and growth while high-dose As exposure decreased both. Long term As activated p53 on account of increasing protein levels of p53, p-p53 (Ser15), and mRNA levels of p21. These demonstrate that arsenic exposure exerts multiple effects. Long term low- or high-dose arsenic induces epithelial-mesenchymal transition, likely via downregulation of E-cadherin, activates p53, and differently affects cell proliferation/growth.

Keywords: Bladder cancer; E-cadherin; arsenic; epithelial-mesenchymal transition; proliferation.