Direction-Dependent Effects of Combined Static and ELF Magnetic Fields on Cell Proliferation and Superoxide Radical Production

Biomed Res Int. 2017:2017:5675086. doi: 10.1155/2017/5675086. Epub 2017 Apr 12.

Abstract

Proliferation of human umbilical vein endothelial cells was stimulated by a nearly vertical 60 or 120 μT static magnetic field (MF) in comparison to cells that were shielded against MFs. When the static field was combined with an extremely low frequency (ELF) MF (18 Hz, 30 μT), proliferation was suppressed by a horizontal but not by a vertical ELF field. As these results suggested that the effects of an ELF MF depend on its direction in relation to the static MF, independent experiments were carried out to confirm such dependence using 50 Hz MFs and a different experimental model. Cytosolic superoxide level in rat glioma C6 cells exposed in the presence of a nearly vertical 33 μT static MF was increased by a horizontal 50 Hz, 30 μT MF, but not affected by a vertical 50 Hz MF. The results suggest that a weak ELF MF may interact with the static geomagnetic field in producing biological effects, but the effect depends on the relative directions of the static and ELF MFs.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Proliferation*
  • Electromagnetic Fields*
  • Glioma / metabolism*
  • Glioma / pathology
  • Human Umbilical Vein Endothelial Cells / metabolism*
  • Humans
  • Rats
  • Superoxides / metabolism*

Substances

  • Superoxides