One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling

Methods Mol Biol. 2017:1606:85-102. doi: 10.1007/978-1-4939-6990-6_6.

Abstract

Bone metastasis from primary cancer sites creates diagnostic and therapeutic challenges. Calcified bone is difficult to biopsy due to tissue hardness and patient discomfort, thus limiting the frequency and availability of bone/bone marrow biopsy material for molecular profiling. In addition, bony tissue must be demineralized (decalcified) prior to histomorphologic analysis. Decalcification processes rely on three main principles: (a) solubility of calcium salts in an acid, such as formic or nitric acid; (b) calcium chelation with ethylenediaminetetraacetic acid (EDTA); or (c) ion-exchange resins in a weak acid. A major roadblock in molecular profiling of bony tissue has been the lack of a suitable demineralization process that preserves histomorphology of calcified and soft tissue elements while also preserving phosphoproteins and nucleic acids. In this chapter, we describe general issues relevant to specimen collection and preservation of osseous tissue for molecular profiling. We provide two protocols: (a) one-step preservation of tissue histomorphology and proteins and posttranslational modifications, with simultaneous decalcification of bony tissue, and (b) ethanol-based tissue processing for TheraLin-fixed bony tissue.

Keywords: Bone; Decalcification; Demineralization; Fixation; Histomorphology; Immunohistochemistry; Phosphoprotein; Pre-analytical variability; Precision medicine; Preservative; Tissue.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone Neoplasms / diagnosis
  • Bone Neoplasms / metabolism
  • Bone Neoplasms / pathology
  • Bone and Bones / anatomy & histology*
  • Bone and Bones / metabolism
  • Bone and Bones / pathology
  • Decalcification Technique / methods*
  • Humans
  • Preservation, Biological / methods*