Drusen in patient-derived hiPSC-RPE models of macular dystrophies

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8214-E8223. doi: 10.1073/pnas.1710430114. Epub 2017 Sep 6.

Abstract

Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby's fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich "drusen-like" composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE-ECM interface.

Keywords: drusen; human induced pluripotent stem cells; macular dystrophies; retinal pigment epithelium; sub-RPE deposits.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blindness / genetics
  • Blindness / pathology
  • Bruch Membrane / pathology*
  • Cells, Cultured
  • Collagen Type IV / metabolism
  • Extracellular Matrix Proteins / genetics
  • Extracellular Matrix Proteins / metabolism
  • Eye Diseases, Hereditary / pathology*
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Macular Degeneration / pathology*
  • Optic Disk Drusen / congenital
  • Optic Disk Drusen / pathology
  • Retinal Drusen / pathology*
  • Retinal Pigment Epithelium / cytology*
  • Retinal Pigment Epithelium / pathology
  • Tissue Inhibitor of Metalloproteinase-3 / genetics

Substances

  • COL4A1 protein, human
  • Collagen Type IV
  • EFEMP1 protein, human
  • Extracellular Matrix Proteins
  • TIMP3 protein, human
  • Tissue Inhibitor of Metalloproteinase-3

Supplementary concepts

  • Basal Laminar Drusen
  • Doyne honeycomb retinal dystrophy
  • Fundus Dystrophy, Pseudoinflammatory, Of Sorsby