Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol

R Soc Open Sci. 2017 Aug 16;4(8):170300. doi: 10.1098/rsos.170300. eCollection 2017 Aug.

Abstract

Novel, molecularly imprinted polymers (MIPs) were developed for the highly sensitive and selective recognition of the stress marker cortisol. Oriented, homogeneous cavities with two binding sites for cortisol were fabricated by surface-initiated atom transfer radical polymerization, using a cortisol motif template molecule (TM1) which consists of a polymerizable moiety attached at the 3-carbonyl group of cortisol via an oxime linkage and an adamantane carboxylate moiety coupled with the 21-hydroxyl group. TM1 was orientationally immobilized on a β-cyclodextrin (β-CD)-grafted gold-coated sensor chip by inclusion of the adamantane moiety of TM1, followed by copolymerization of a hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine, with or without a cross-linker, N,N'-methylenebisacrylamide. Subsequent cleavage of the oxime linkage leaves the imprinted cavities that contain dual binding sites-namely, the aminooxy group and β-CD-capable of oxime formation and hydrophobic interaction, respectively. As an application, MIP-based picomolar level detection of cortisol was demonstrated by a competitive binding assay using a fluorescent competitor. Cross-linking of the MIP imparts rigidity to the binding cavities, and improves the selectivity and sensitivity significantly, reducing the limit of detection to 4.8 pM. In addition, detection of cortisol in saliva samples was demonstrated as a feasibility study.

Keywords: competitive binding assay; cortisol; molecular imprinting; molecular recognition; saliva; stress marker.

Associated data

  • figshare/10.6084/m9.figshare.c.3843643