Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802

Microb Cell Fact. 2018 Feb 20;17(1):28. doi: 10.1186/s12934-018-0875-1.

Abstract

Background: The deep-sea-derived microbe Streptomyces koyangensis SCSIO 5802 produces neoabyssomicins A-B (1-2) and abyssomicins 2 (3) and 4 (4). Neoabyssomicin A (1) augments human immunodeficiency virus-1 (HIV-1) replication whereas abyssomicin 2 (3) selectively reactivates latent HIV and is also active against Gram-positive pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Structurally, neoabyssomicins A-B constitute a new subtype within the abyssomicin family and feature unique structural traits characteristic of extremely interesting biosynthetic transformations.

Results: In this work, the biosynthetic gene cluster (BGC) for the neoabyssomicins and abyssomicins, composed of 28 opening reading frames, was identified in S. koyangensis SCSIO 5802, and its role in neoabyssomicin/abyssomicin biosynthesis was confirmed via gene inactivation and heterologous expression experiments. Bioinformatics and genomics analyses enabled us to propose a biosynthetic pathway for neoabyssomicin/abyssomicin biosynthesis. Similarly, a protective export system by which both types of compounds are secreted from the S. koyangensis producer was identified, as was a four-component ABC transporter-based import system central to neoabyssomicin/abyssomicin biosynthesis. Furthermore, two regulatory genes, abmI and abmH, were unambiguously shown to be positive regulators of neoabyssomicin/abyssomicin biosynthesis. Consistent with their roles as positive regulatory genes, the overexpression of abmI and abmH (independent of each other) was shown to improve neoabyssomicin/abyssomicin titers.

Conclusions: These studies provide new insight into the biosynthesis of the abyssomicin class of natural products, and highlight important exploitable features of its BGC for future efforts. Elucidation of the neoabyssomicin/abyssomicin BGC now enables combinatorial biosynthetic initiatives aimed at improving both the titers and pharmaceutical properties of these important natural products-based drug leads.

Keywords: Abyssomicin; Biosynthesis; Pathway-specific regulator; Tetronate; Transporter.

MeSH terms

  • Biosynthetic Pathways / genetics*
  • Genes, Regulator / genetics*
  • Multigene Family / genetics*
  • Streptomyces / genetics*