Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates

Phys Rev Lett. 2018 Feb 9;120(6):063201. doi: 10.1103/PhysRevLett.120.063201.

Abstract

We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μG scale. We split a ring-trapped condensate, initially in the m_{f}=0 hyperfine state, into superpositions of internal m_{f}=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the m_{f}=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.