Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii

J Antimicrob Chemother. 2018 Jun 1;73(6):1492-1500. doi: 10.1093/jac/dky034.

Abstract

Objectives: To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii.

Methods: Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays.

Results: MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity.

Conclusions: This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / drug effects
  • Acinetobacter baumannii / genetics*
  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics*
  • Chlorhexidine / pharmacology
  • Disinfectants / pharmacology
  • Drug Resistance, Multiple, Bacterial / genetics*
  • Gene Expression Regulation, Bacterial*
  • Genes, MDR*
  • Humans
  • Membrane Transport Proteins / genetics*

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Disinfectants
  • Membrane Transport Proteins
  • Chlorhexidine