Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3255-3260. doi: 10.1073/pnas.1722323115. Epub 2018 Mar 5.

Abstract

The role of cholesterol in bilayer and monolayer lipid membranes has been of great interest. On the biophysical front, cholesterol significantly increases the order of the lipid packing, lowers the membrane permeability, and maintains membrane fluidity by forming liquid-ordered-phase lipid rafts. However, direct observation of any influence on membrane chemistry related to these cholesterol-induced physical properties has been absent. Here we report that the addition of 30 mol % cholesterol to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) monolayers at the air-water interface greatly reduces the oxidation and ester linkage cleavage chemistries initiated by potent chemicals such as OH radicals and HCl vapor, respectively. These results shed light on the indispensable chemoprotective function of cholesterol in lipid membranes. Another significant finding is that OH oxidation of unsaturated lipids generates Criegee intermediate, which is an important radical involved in many atmospheric processes.

Keywords: OH radical; air–water interface; chemoprotection; cholesterol; phospholipid.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cholesterol / chemistry*
  • Lipid Bilayers / chemistry*
  • Membrane Lipids / chemistry*
  • Oxidation-Reduction
  • Phosphatidylcholines / chemistry*
  • Surface Properties
  • Water / chemistry*

Substances

  • Lipid Bilayers
  • Membrane Lipids
  • Phosphatidylcholines
  • Water
  • Cholesterol