Polydopamine Induced in-Situ Formation of Metallic Nanoparticles in Confined Microchannels of Porous Membrane as Flexible Catalytic Reactor

ACS Appl Mater Interfaces. 2018 May 2;10(17):14735-14743. doi: 10.1021/acsami.8b02231. Epub 2018 Apr 17.

Abstract

Oxidant-regulated polymerization of dopamine was exploited, for the first time, for effective surface engineering of the well-defined cylindrical pores of nuclear track-etched membranes (NTEMs) to develop novel catalytic membrane reactor. First, in the presence of a strong oxidant, controlled synthesis of polydopamine (PDA) with tunable particle size was achieved, allowing a homogeneous deposition to the confined pore channels of NTEMs. The PDA interfaces rich in catechol and amine groups provided enhanced hydrophilicity to promote mass transport across the membrane and abundant nucleation sites for formation and stabilization of metallic nanoparticles (NPs). In-situ reductive growth of multiple metallic NPs, including Pd, Ag, and Au, was then achieved inside the cylindrical pores of NTEMs. Using the functionalized membrane as a catalytic reactor, efficient reduction of 4-nitrophenol (4-NP) was demonstrated in a flow-through mode. Moreover, after dissolution removal of the NTEMs, self-sustained one-dimensional (1D) PDA/M (M = Pd, Ag, or Au) hybrid nanotubes (NTs), with determined aspect ratio and a length reaching up to 10 μm, were obtained for catalysis of 4-NP in a batch reaction mode. This study established a facile and versatile method, by rational tuning of the polymerization behavior of dopamine, for effective modification of confined microscale/nanoscale cavities with different surface characteristics. The integration of PDA chemistry with NTEMs would provide more opportunities for development of novel catalytic membrane reactors as well as for the tailored synthesis of functional 1D nanotubes for broadened applications.

Keywords: catalysis; membrane reactor; metal nanoparticles; polydopamine; porous membrane.