A quantitative framework for motion visibility in human cortex

J Neurophysiol. 2018 Oct 1;120(4):1824-1839. doi: 10.1152/jn.00433.2018. Epub 2018 Jul 11.

Abstract

Despite the central use of motion visibility to reveal the neural basis of perception, perceptual decision making, and sensory inference there exists no comprehensive quantitative framework establishing how motion visibility parameters modulate human cortical response. Random-dot motion stimuli can be made less visible by reducing image contrast or motion coherence, or by shortening the stimulus duration. Because each of these manipulations modulates the strength of sensory neural responses they have all been extensively used to reveal cognitive and other nonsensory phenomena such as the influence of priors, attention, and choice-history biases. However, each of these manipulations is thought to influence response in different ways across different cortical regions and a comprehensive study is required to interpret this literature. Here, human participants observed random-dot stimuli varying across a large range of contrast, coherence, and stimulus durations as we measured blood-oxygen-level dependent responses. We developed a framework for modeling these responses that quantifies their functional form and sensitivity across areas. Our framework demonstrates the sensitivity of all visual areas to each parameter, with early visual areas V1-V4 showing more parametric sensitivity to changes in contrast and V3A and the human middle temporal area to coherence. Our results suggest that while motion contrast, coherence, and duration share cortical representation, they are encoded with distinct functional forms and sensitivity. Thus, our quantitative framework serves as a reference for interpretation of the vast perceptual literature manipulating these parameters and shows that different manipulations of visibility will have different effects across human visual cortex and need to be interpreted accordingly. NEW & NOTEWORTHY Manipulations of motion visibility have served as a key tool for understanding the neural basis for visual perception. Here we measured human cortical response to changes in visibility across a comprehensive range of motion visibility parameters and modeled these with a quantitative framework. Our quantitative framework can be used as a reference for linking human cortical response to perception and underscores that different manipulations of motion visibility can have greatly different effects on cortical representation.

Keywords: BOLD signal; fMRI; human visual cortex; motion visibility; visual perception.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Connectome
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Motion Perception*
  • Visual Cortex / physiology*