Tracking, Behavior and Fate of 58 Pesticides Originated from Hops during Beer Brewing

J Agric Food Chem. 2018 Sep 26;66(38):10113-10121. doi: 10.1021/acs.jafc.8b03416. Epub 2018 Sep 13.

Abstract

The study presents tracking of 58 pesticide residues associated with hops to estimate their carryover into brewed beer. The pesticides were spiked onto organic hops at a concentration of 15 mg/kg, and the wort was boiled with the artificially contaminated hops and fermented on a laboratory scale. Samples were collected during the whole brewing process and pesticide residues were extracted using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An HPLC-HR-MS/MS method was developed and validated to identify and quantitate pesticide residues in treated hops, spent hops, hopped wort, green beer, and beer samples. Quantitation was achieved using standard addition with isotopically labeled standards. The carryover percentages into hopped wort and the percentages of decay reduction relative to the amount spiked on hops were calculated. The relationship between the partition coefficients n-octanol-water (log P values) and the residual ratios ( RW and RB) of a pesticide were evaluated to predict their behavior during hopping of wort and fermentation. Pesticides with a high log P values (>3.75) tended to remain in spent hops. The pesticides that have a low log P value up to approximately 3 could represent the demarcation lines of appreciable transfer rate of pesticides from hops to beer. Consequently, the pesticides were divided into three categories depending upon their fate during the brewing process. The most potential risk category represents a group involving the thermostable pesticides, such as azoxystrobin, boscalid, dimethomorph, flonicamid, imidacloprid, mandipropamid, myclobutanil, and thiamethoxam, which were transferred at high rates from the pesticide enriched hops into beer during the laboratory brewing trial. These results can be used as a guideline in the application of pesticides on hop plants that would reduce the level of pesticide residues in beer and their exposure in humans.

Keywords: beer; fate; green beer; hops; pesticide residues; thermal stability; wort.

MeSH terms

  • Beer / analysis*
  • Chromatography, High Pressure Liquid
  • Food Contamination / analysis*
  • Food Handling
  • Humulus / chemistry*
  • Pesticide Residues / chemistry*
  • Tandem Mass Spectrometry

Substances

  • Pesticide Residues