Osteoinduction of stem cells by collagen peptide-immobilized hydrolyzed poly(butylene succinate)/β-tricalcium phosphate scaffold for bone tissue engineering

J Biomater Appl. 2017 Jan;31(6):859-870. doi: 10.1177/0885328216684374.

Abstract

Bone substitute is a therapeutic approach to treat bone abnormalities. A scaffold serves mainly as osteoconductive elements. To facilitate a better biological performance, short collagen peptide was immobilized onto hydrolyzed poly(butylene succinate)/β-tricalcium phosphate (HPBSu/TCP) scaffolds. PBSu/TCP (80:20) scaffolds were fabricated by a supercritical CO2 technique, hydrolyzed with 0.6 M NaOH and conjugated with short collagen peptide tagged with or without red fluorescence. The surface morphology and porous structure of scaffolds were characterized by scanning electron microscopy and micro-computed tomography. Human mesenchymal stem cells were cultured onto the scaffolds and examined for osteogenic differentiation and biomineralization in vitro by means of alkaline phosphatase activity, alizarin red staining, and reverse transcription-polymerase chain reaction. The PBSu/TCP and HPBSu/TCP scaffolds were successfully prepared. Scanning electron microscopy and micro-computed tomography results showed that the porosity was distributed throughout the scaffolds with the pore sizes in the range of 250-900 µm. Fluorescence microscopy demonstrated retention of tagged short collagen peptide on the scaffold. Mesenchymal stem cells adhered and grew well on the material. Under osteogenic induction, cells cultured on the short collagen peptide -immobilized scaffold significantly produced a greater amount of alkaline phosphatase activity and positive mineralization than those cultured on the control scaffold. The present results have shown that the short collagen peptide-immobilized HPBSu/TCP scaffold enhanced osteoinduction and biomineralization of stem cell-derived osteoblasts, possibly via stimulation of alkaline phosphatase activity. This suggests the potential use of osteogenic peptide-immobilized material in bone tissue engineering for correcting bone defects.

Keywords: Hydrolyzed poly(butylene succinate)/β-tricalcium phosphate; collagen peptide; osteoblast differentiation; osteoinduction; stem cells.