Left ventricular performance indices by transesophageal Doppler

Anesthesiology. 1988 Nov;69(5):728-37. doi: 10.1097/00000542-198811000-00015.

Abstract

The purpose of this study was to assess whether blood flow velocity signals, obtained by esophageal continuous-wave Doppler, reflect changes in ventricular performance. Ventricular performance has previously been determined by analysis of blood flow velocity signals sampled in the ascending aorta. In this investigation velocity signals were acquired from the descending aorta, with the use of an esophageal Doppler transducer. Maximum blood flow velocity (Vm), maximum blood flow volume acceleration (Accv), and maximum linear blood flow acceleration (Acc) were the velocity signals used to evaluate left ventricular performance. Twenty-six patients scheduled for myocardial revascularization and anesthetized with fentanyl (50 micrograms/kg) and pancuronium (0.15 mg/kg) were studied. In seven patients (Group I) a good correlation (r = 0.91) was observed between Accv in the ascending and descending aorta. In 10 patients (Group 2), halothane (0.5 and 1.0 MAC end-tidal) was added to the anesthetic. At these halothane concentrations Vm, Accv, and Acc measured in the descending aorta remained unchanged. Decreases were noted in the product of mean arterial pressure (MAP) and Acc (P-Acc; decreased 20% at 0.5 MAC and 39% at 1 MAC) and the product of systemic vascular resistance and Acc (R-Acc; decreased 25% at 1 MAC). In nine patients (Group 3), phenylephrine was used to reverse the decrease in MAP induced by 1 MAC halothane. Under these conditions Vm, Accv, Acc, and P-Acc showed similar decreases (approximately 30% of baseline values), whereas R-Acc returned to baseline values. In summary, indices of blood flow in the descending aorta were easily determined with a commercial transesophageal continuous-wave Doppler device. Descending and ascending aortic blood flow Accv correlated well, and the changes in the product of MAP and Acc in the descending aorta reflected the anticipated, halothane-induced, changes in left ventricular performance. In conclusion, descending aortic blood flow acceleration contains information on left ventricular performance that can be derived by the minimally invasive transesophageal Doppler technique.

MeSH terms

  • Aorta, Thoracic
  • Blood Flow Velocity
  • Coronary Disease / physiopathology*
  • Heart / physiopathology*
  • Heart Ventricles / physiopathology
  • Humans
  • Ultrasonography / instrumentation*
  • Ultrasonography / methods