Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat

CRISPR J. 2018 Feb 1;1(1):65-74. doi: 10.1089/crispr.2017.0010.

Abstract

The CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method to modify multiple genomic regions simultaneously controlling different agronomic traits in crops. We applied the MGE construct built by combining the tandemly arrayed tRNA-gRNA units to generate heritable mutations in the TaGW2, TaLpx-1, and TaMLO genes of hexaploid wheat. The knockout mutations generated by this construct in all three homoeologous copies of one of the target genes, TaGW2, resulted in a substantial increase in seed size and thousand grain weight. We showed that the non-modified gRNA targets in the early generation plants can be edited by CRISPR-Cas9 in the following generations. Our results demonstrate that transgenerational gene editing activity can serve as the source of novel variation in the progeny of CRISPR-Cas9-expressing plants and suggest that the Cas9-inducible trait transfer for crop improvement can be achieved by crossing the plants expressing the gene editing constructs with the lines of interest.