Light Spread Manipulation in Scintillators Using Laser Induced Optical Barriers

IEEE Trans Nucl Sci. 2018 Aug;65(8):2208-2215. doi: 10.1109/TNS.2018.2809570. Epub 2018 Feb 27.

Abstract

We are using the Laser Induced Optical Barriers (LIOB) technique to fabricate scintillator detectors with combined performance characteristics of the two standard detector types, mechanically pixelated arrays and monolithic crystals. This is done by incorporation of so-called optical barriers that have a refractive index lower than that of the crystal bulk. Such barriers can redirect the scintillation light and allow for control of the light spread in the detector. Previous work has shown that the LIOB technique has the potential to achieve detectors with high transversal and depth of interaction (DOI) resolution simultaneously in a single-side readout configuration, suitable for high resolution PET imaging. However, all designs studied thus far present edge effect issues similarly as in the standard detector categories. In this work we take advantage of the inherent flexibility of the LIOB technique and investigate alternative barrier patterns with the aim to address this problem. Light transport simulations of barrier patterns in LYSO:Ce, with deeper barrier walls moving towards the detector edge show great promise in reducing the edge effect, however there is a trade-off in terms of achievable DOI information. Furthermore, fabrication and characterization of a 20 mm thick LYSO:Ce detector with optical barriers forming a pattern of 1 × 1 × 20mm3 pixel like structures show that light channeling in laser-processed detectors in agreement with optical barriers with refractive index between 1.2 and 1.4 is achievable.

Keywords: Depth of interaction (DOI); LYSO:Ce; Laser Induced Optical Barriers; PET; detector fabrication; high-resolution; light transport simulations.